Millaista tietojenkäsittelytieteen opiskelu on?

Jos mietit kannattaisiko alaa alkaa opiskelemaan niin olet oikealla sivulla

Tietojenkäsittelytiede on aavistuksen näsäviisaasti ilmaistuna tiedettä tiedon käsittelystä. Nykyään tietojenkäsittelytiede hyödyntää vahvasti digitaalisia järjestelmiä. Käytännössä tietojenkäsittelytieteeseen kuuluu siis tiedon keräämiseen, tallentamiseen, välittämiseen, näyttämiseen, muuntamiseen sekä käsittelyyn liittyviä aihepiirejä. Käytännössä parhaan kuvan tietojenkäsittelytieteen tutkinnon rakenteesta Itä-Suomen yliopistossa saat kurssikuvauksista, jotka löydät alta. Kurssit ovat osapuilleen samat Kuopiossa ja Joensuussa, ainut isompi muuttuja on sivuainemahdollisuudet ja se että Serveriläiset opiskelevat Kuopiossa. (Joensuussa tietojenkäsittelytieteen ainejärjestönä toimii Skripti ry)

Tietojenkäsittelytiede lehtorimme, Erkki Pesosen esittelemänä:

https://youtu.be/PMIhWO6C_FY

UEF tietojenkäsittelytieteen opintorakenne

Alla olevassa taulukkokokoelmassa on nähtävillä tietojenkäsittelytieteen pääaineeseen kuuluvat kurssit kurssiselosteineen sellaisina kuin ne oli kopioitaessa keväällä 2021.

Yleisopinnot

Yleisopinnot tukevat opiskelua erityisesti ensimmäisenä opiskeluvuotena.

UEF tietojenkäsittelytieteen yleisopinnot

Opintojakso

Kurssikuvaus

Laajuus (opintopisteet)

Hops-tietojenkäsittelytiede

(Hops = henkilökohtainen opintosuunnitelma)

2

Orientaatio yliopisto-opiskeluun

Opiskelija tutustuu oppiaine- ja vertaistuutoroinnin, verkkomateriaalin, erilaisten orientaatiotapahtumien sekä oheismateriaalin avulla yliopistoon opiskeluympäristönä ja oppimisyhteisönä. Erityisesti tutustutaan oman oppiaineen opiskelukäytäntöihin ja opiskelua tukeviin palveluihin. Lisäksi saadaan tietoa akateemisen opiskelun edellyttämistä tiedoista ja taidoista sekä opiskelukyvystä ja sen ylläpitämisestä.

1

Tieto- ja viestintätekniikka opiskelun tukena

Internetin edistyksellinen käyttö. Tietoturva, tekijänoikeudet ja sosiaalinen media opiskelussa.

Pdf-tiedoston luominen.

Office 365 ympäristö henkilökohtaisena oppimisympäristönä.

Tekstinkäsittely (tekstin muokkaus ja muotoilu, listan muokkaus, ala- ja loppuviite, taulukon lisäys ja muokkaus, kuvan lisäys ja muokkaus, tyylin päivittäminen, ylä- ja alatunnisteet, sivunumerointi, otsikointi, sisällysluettelo).

Esitysgrafiikan perusteet (dian muokkaus, muodot, teemojen käyttö, diatunnisteet).

Taulukkolaskennan perusteet (taulukon muokkaus, perusfunktiot, kaavion luominen ja muokkaaminen).

Yliopisto-opiskelun keskeiset verkkoresurssit.

2


Perusopinnot

Perusopinnot antavat kokonaiskuvan tietojenkäsittelytieteestä ja rakentavat perustan aineopintojen kursseille.

UEF tietojenkäsittelytieteen perusopinnot

Opintojakso

Kurssikuvaus

Laajuus (opintopisteet)

Johdatus tietojenkäsittelyyn

Informaatio, sen esittäminen ja tallentaminen ja sen käsittelemisen automatisointi. Ohjelmointi, ohjelmointikielet, ja kuinka niillä luodaan ohjelmia ja ohjelmistoja. Tiedon mallintaminen, tietokannat, tietoverkot ja kuinka tietoa hallitaan. Laskennan rajat. Suunnittelu, design ja älykkäät järjestelmät. Tietojenkäsittelyn ja tietojenkäsittelijän tehtävät ja vastuut yhteiskunnassa.

5

Ohjelmointi I - Ohjelmoinnin perusteet

Johdatus ohjelmointiin: ohjelmiin perehtyminen, perusohjausrakenteet (peräkkäisyys, ehto, valinta) käyttötarkoituksineen, syöttö, tulostus ja tiedostonkäsittely, muuttujat, taulukot ja niiden käyttötavat, merkkijonot, modulaarisuuden idea ja hyödyntäminen funktioilla ja ohjelmien testaus.

5

Tietojärjestelmän suunnittelu

Erilaiset (viite)kehykset auttavat kuvaamaan kohdealueen rakenteen ja määrittelevät keskeiset termit sekä auttavat kuvaamaan kohdealueen rakenteeseen kuuluvia elementtejä (tai entiteettejä) ja niiden välisiä suhteita (puhutaan metamalleista) – opetellaan hyödyntämään erilaisia sanastoja, standardeja ja kehittämiseen tarkoitettuja viitekehyksiä ja kuvauksia sekä opetellaan tekemään erilaisia tietojärjestelmän suunnitteluun kuuluvia kaavioita esimerkiksi ArchiMate-notaatiota tukevalla Archi-työkalulla tai UML-notaatiota tukevilla Visio-malleilla. Erilaiset kehitysalusta, kuten Azure DevOps, tarjoavat erilaisia työprosesseja (kuten Agile) – opetellaan allokoimaan tuotteen kehitysjonon ominaisuuksia esimerkiksi Azure DevOpsin avulla. Erityisesti kurssilla opetellaan suunnittelukuvausten sisällön ristiriidattomuutta alkaen epiikkimäisestä aiheesta, tarkentuen käyttäytymis- ja rakenne-elementteihin ja edelleen tietohakemisto- ja operaatiokuvauksiin, jotka tukevat sovelluskehitystä ja muuta tietojen hyödyntämistä esimerkiksi raportoinnissa.

5

Ihminen ja vuorovaikutteinen teknologia

Johdatus ihmisen ja koneen väliseen vuorovaikutukseen ja käyttäjäkeskeiseen suunnitteluun. Alan peruskäsitteet, erilaiset vuorovaikutustavat ja -välineet. Käytettävyys ja käyttäjäkokemus. Vuorovaikutuslaitteet ja erilaiset käyttöliittymät. Käyttöliittymien suunnittelun perusteet. Graafisten käyttöliittymien suunnittelu ja arviointi.

5

Tietokonejärjestelmät

Tietojärjestelmien perusteet; keskusyksikön osat, tehtävät ja toiminnat; tietokoneen muisti ja muistinhallinta; käyttöjärjestelmän periaatteet ja toiminta; loppukäyttäjän laiteet; IT-infrastruktuurin perusteet ja rakenne. Syventävä itseopiskeluosuus opintojakson sisältöä laajentavien aihealueiden pohjalta.

5


Aineopinnot

Aineopintojen kursseilla opiskellaan tietojenkäsittelytieteen keskeiset perusasiat, jotka antavat teoreettiset perustiedot ja käytännön osaamista alan tehtäviin. Tämä muodostaa pohjan maisteriopinnoille.

UEF tietojenkäsittelytieteen aineopinnot

Opintojakso

Kurssikuvaus

Laajuus (opintopisteet)

Diskreetit rakenteet

Propositio- ja predikaattilogiikka, joukko-oppi, funktiot ja relaatiot, kombinatoriikka, graafiteoria, matemaattinen induktio

5

Ohjelmointi II

Olio-ajattelu ja mallintaminen, luokat ja oliot, tiedon kätkentä, luokka- ja oliokohtaiset muuttujat, luokka- ja oliokohtaiset metodit, rakentaja ja tuhoaja, periytyminen (on jotakin -suhde), monimuotoisuus, abstraktit luokat, rajapintaluokat, osasuhde ja käyttösuhde (on jollakin -suhde), säikeet, poikkeukset olioiden kannalta. Tapahtuma-ohjattu ohjelmointi, säiliöluokat ja geneeriset luokat.

5

Tiedonhallinta ja SQL

Tiedonhallinta käsitteenä; relaatiotietokantojen suunnittelu; käsiteanalyysi ja ER-kaavio; tietomallit; SQL-kielen perusteet; tietokannanhallintajärjestelmät (esim. MariaDB); pienimuotoinen tietokantoihin perustuva sovelluskehitys

5

Ohjelmistotuotanto I

Teoria 2 op + projekti/harjoitustyö 3 op. Vaatimustenhallinta. Elinkaarimallit. Ohjelmistoprojektin hallinta. Johdantoa tietojärjestelmien ja ohjelmistotekniikan käsitteisiin ja ohjelmistotyön ongelmia. Dokumentointi. Projektissa: projektikortti - arvioitu aikataulu, projektin seuranta - oman ajankäytön seuranta, toteutus, loppuraportti, katselmointi ja palaverikäytännöt, arkkitehtuurisuunnitelma annetaan valmiina perusteluineen

5

Web-ohjelmointi

HTML5 ja CSS. JavaScript perusteet. CSS- ja JavaScript-kirjaston hyödyntäminen

5

Tietorakenteet ja algoritmit I

Algoritmit ja aikavaativuusanalyysi. Abstraktit tietotyypit. Tietorakenteiden toteuttaminen. Haku- ja lajittelualgoritmit. Rekursiiviset algoritmitoteutukset.

5

Tietorakenteet ja algoritmit II

Algoritmit ja aikavaativuusanalyysi. Graafit, graafialgoritmit ja niiden soveltaminen. Kokeellinen aikavaativuusanalyysi. Massamuistia tehokkaasti käyttävät algoritmit.

4

Laskennan perusmallit

Tietojenkäsittelyteorian alkeiden hallinta. Säännöllisten kielten ja kontekstittomien kielten kuvaamisessa ja käsittelemisessä tarvittavien perusvälineiden ja -tekniikoiden hallinta. Käsitys laskettavuuden ja ratkeavuuden perusteista, Churchin-Turingin teesistä ja näiden keskeisistä perusteluista ja seurauksista.

3

Ohjelmistotuotanto II

UML. Versionhallinta. Projektinhallintajärjestelmä (MS-project). Testaus. Iteratiiviset mallit. Projektin seuranta - projektityön mittarointi (dashboards, riskinhallinta). Arkkitehtuurisuunnittelua. Määrittely. Projekti: ulkoinen asiakas/projektiryhmän oma aihe.

10

Johdatus tietoturvaan

Tietoturvan perusteet, tietoturvan termistö, kryptografia, autentikointi, pääsynvalvonta, tietokantojen tietoturva, pilvipalveluiden tietoturva, haittaohjelmat, palvelunestohyökkäykset, palomuurit, hyökkäysten havaitsemis-/estojärjestelmät, verkkoturvallisuus, langaton tietoturva, IoT-laitteiden tietoturva, fyysinen tietoturva, organisaation tietoturvapolitiikka, GDPR-tietosuoja-asetus.

5

Hajautetut ja samanaikaiset järjestelmät

Hajautetun järjestelmän peruskäsitteet ja haasteet. Hajautetun järjestelmän mallit (rakenne-, vuorovaikutus-, vika- ja turvallisuusmallit). Kommunikaatio ja kommunikaatioprotokollat hajautetuissa järjestelmissä. Hajautetun järjestelmän tietoturva. Samanaikaisuuden peruskäsitteet ja haasteet. Säikeiden koordinointi ja säikeiden välinen kommunikaatio.

5

Aineopintojen seminaari

Kandidaatin tutkielmaan liittyvän kirjallisuuskatsauksen tekeminen, tutkimussuunnitelman tekeminen, ja tutkielmaan liittyvän seminaariesityksen pitäminen sekä muiden pitämien seminaariesitelmien arvioiminen. Seminaari tehdään samanaikaisesti kandidaatin tutkielman kanssa.

2

LuK-tutkielma ja kypsyysnäyte

Tutkimussuunnitelman ja tieteellisen tutkielman laatiminen annetusta tutkimusaiheesta. Tutkielma laaditaan aineopintojen seminaarissa annettujen ohjeiden mukaisesti nimetyn ohjaajan valvonnassa. Tutkielma esitellään suullisesti aineopintojen seminaarissa.

6


Valinnaiset aineopinnot

Valinnaisia aineopintoja kuuluu tutkintoon vähintään 5 op. Ne sijoittuvat toiseen ja kolmanteen opiskeluvuoteen. Kurssit käsittelevät tietojenkäsittelyn erilaisia kiinnostavia osa-alueita, jotka tukevat ammatillista osaamista ja antavat osaltaan pohjaa maisteriopinnoille.

UEF tietojenkäsittelytieteen valinnaiset aineopinnot

Opintojakso

Kurssikuvaus

Laajuus (opintopisteet)

Aineopintojen harjoitustyö

2-5

Aineopintojen harjoittelu

Kahden tai kolmen kuukauden harjoittelu yrityksessä sisältäen esim. ohjelmointia, määrittelyä, suunnittelua, dokumentointia, testausta ja/tai ylläpitoa. Opintojakso vain pääaineena tkt:ta lukeville.

5-8

Robotiikka

Robotiikkaa yhteiskunnassa. Robotiikan perusteet: robottien rakenne, sensorit ja aktuaattorit, ohjelmointiympäristöt sekä ROS (Robotics Operating System), Lego Mindstorms –projekteja, Arduino-robotiikka, elektroniikka Arduinoissa, sensorit ja aktuaattorit, Arduino-projekteja, navingointi- ja suunnittelualgoritmit robotiikassa, koneoppimis- ja optimointialgoritmit robotiikassa. Lopputyö.

4

Johdatus testaukseen

Ohjelmistovirheet, testauksen vaiheet, testausmenetelmät, regressiotestaus, testauksen automatisointi, testausprosessin kehittäminen

4


Johdatus sulautettuihin järjestelmiin

Sulautettujen järjestelmien määritelmiä, piirteitä ja esimerkkejä eri sovellusalueilta. Laitemarkkinat ja työllistävä vaikutus. Sulautetun järjestelmän suunnitteluprosessi. Termejä ja käsitteitä, esim. logiikat, ajoitukset, väylät. Ohjelmistot ja ohjelmointi. Reaaliaikajärjestelmät. Testaus. Ympäristönäkökulmat.

4

Android ohjelmoinnin perusteet

Kurssilla tutustutaan mobiiliohjelmoinnin perusteisiin ja erityispiirteisiin sekä erityisesti Android-alustalle rakennettavien mobiilisovellusten tekemiseen Android Studio ympäristössä. Kurssilla käydään läpi seuraavia aihepiirejä:

· Graafisen käyttöliittymän rakentaminen, asettelu ja komponentit.

· Ohjelman ajaminen emulaattorilla.

· Käyttöliittymää määrittelevät XML-tiedostot ja niiden muokkaus.

· Ohjelman toiminnallisuuden määrittelevät tiedostot.

· Kuvien ja viestien käyttö.

· Kosketuksen käsittely, piirtäminen.

· Valikot sekä äänet.

4

Johdatus algoritmiseen data-analyysiin

Data-analyysin vaiheet. Kuvailevan ja ennustavan data-analyysin peruskäsitteet. Assosiaatiosääntöjen ja kattavien joukkojen louhinta. Yleisimmät ryhmittelyalgoritmit. Verkkojen analysoinnin perusteet. Päätöspuut, naiivi Bayes -luokkitelijat ja lineaariset luokittelijat. Ydinkikka. Tulosten merkitsevyyden testaus. Poikkeuksien havaitseminen ja analysointi. Yksityisyys ja syrjiminen data-analyysissä. Menetelmien tehokas toteutus

4

Liiketoiminta keskeinen data-analytiikka

4

Datasta näkemyksiä

Datasta saadaan näkemyksiä (eli merkityksellisiä tietoja) esille hyödyntämällä ohjelmointikielien kirjastoja tai käyttämällä erilaisia valmisohjelmistoja – opetellaan erilaisten valmisohjelmistojen avulla tuottamaan automaattisesti datasta esimerkiksi ennakointimalleja ja pikanäkemyksiä, jotka auttavat kiinnittämään huomiota esimerkiksi poikkeamiin ja trendeihin. Erilaisten automaattisti tuotettujen ennakointimallien ja pikanäkemysten pohjalta voidaan muodostaa tarkentavia kysymyksiä ja tunnistaa datasta muuttujia, jotka kannattaa huomioida esimerkiksi piirresuunnittelussa – opetellaan kuvailemaan data-aineiston muuttujat ja arvioimaan data-aineistojen käyttökelpoisuutta. Lisäksi opetellaan muuntamaan dataa ja yhdistelemään erilaisia data-aineistoja tarkoituksellisien analyysien ja tilannekuvien tekemiseksi.

4

Digitaalisten oppimisympäristojen toteutusteknologiat

Opettajan rooli ja pedagogiset ratkaisut digitaalisissa oppimisympäristöissä, oppimisympäristöjen suunnittelu- ja arviointinäkökohdat. Virtuaaliset ja mobiilit oppimisympäristöt, robotiikka ja sulautetut järjestelmät opetuksessa, esineiden internet, oppimisen tiedonlouhinta ja oppimisanalytiikka digitaalisissa oppimisympäristöissä.

4

Laskennallinen älykkyys I

Opintojakson aikana opitaan tekemään yleisiä johtopäätöksiä käyttäjän kokemuksista, markkinoinnista, henkilökohtaisista mieltymyksistä ja ihmisten käyttäytymisestä. Opintojaksolla tutustutaan myös mm. hakukoneiden toimintaan ja tietoverkoissa tapahtuvaan sosiaaliseen kanssakäymiseen. Opintojaksolla esitellään koneoppimista tietojenkäsittelytieteen opiskelijoille ja myös muille opiskelijoille, jotka eivät välttämättä omaa vahvaa matemaattista taustaa. Opintojaksolla käsitellään mm. seuraavia asioita: Suositusten antaminen, Datan klusterointi, Hakukoneet, Dokumenttien suodattaminen, Päätöspuut (decision trees), Bayes-luokittelijat (Bayesian classifiers), Neuroverkot (neural networks) ja Deep Learning (ml. data-analytiikan käytännön esimerkkejä).

4


Tietojärjestelmän suunnittelu

Erilaiset (viite)kehykset auttavat kuvaamaan kohdealueen rakenteen ja määrittelevät keskeiset termit sekä auttavat kuvaamaan kohdealueen rakenteeseen kuuluvia entiteettejä ja niiden välisiä suhteita (puhutaan metamalleista) – opetellaan lukemaan erilaisia organisaation tietojen, toimintojen, tietojärjestelmien ja/tai teknologioiden kuvaamiseen tarkoitettuja (viite)kehyksiä kuten IT4IT ja TOGAF 9.2. Erilaiset mallinnuskielet laajentavat/syventävät metamallien kuvauskohteita – opetellaan tekemään erilaisia tietojärjestelmän suunnitteluun kuuluvia kaavioita esimerkiksi Archimate ja Unified Modeling Language (UML) kuvauskielillä. Erilaiset kehitysalusta, kuten Azure, tarjoavat erilaisia työprosesseja (kuten Agile) ja kehitysputkien avulla on mahdollista kehittää erilaisia sovelluksia DevOps-kehitystavalla. Lisäksi kehitysalustat auttavat erilaisten arkkitehtuurien omaksumisessa.

4


Kieli- ja viestintäopinnot

Kieli- ja viestintäopinnot tukevat tietojenkäsittelytieteen opintoja ja antavat perustaidot ruotsin ja englannin kielten akateemiselle osaamiselle.

UEF tietojenkäsittelytieteen kieli- ja viestintäopinnot

Opintojakso

Kurssikuvaus

Laajuus (opintopisteet)

Kirjoitusviestintää tietojenkäsittelytieteen opiskelijoille

• opintojen ja työelämän kannalta keskeiset tekstilajit sekä tieteen viestinnän erityispiirteet
• oikeakielisyys ja huoliteltu teksti
• argumentoinnin keinot
• tyyli ja tarkoituksenmukainen sävy
• kriittinen lukutapa ja tekstianalyysi
• kirjoitusprosessin hallinta ja erityisesti oman kandidaatintutkielman työstäminen
• tekstien kohdentaminen lukijoille ja yleistajuinen viestintä
• rakentavan palautteen antaminen ja vastaanottaminen

2

Puheviestintää tietojenkäsittelytieteen opiskelijoille

Vuorovaikutusosaaminen ja sen kehittäminen, vuorovaikutus omalla ammatti- ja tieteenalalla, vuorovaikutuskeskeisyys, reagoiva kuunteleminen, kohderyhmän huomioon ottaminen, palautteen antaminen ja vastaanottaminen, yhteistyötaidot.

2

Ruotsia tietojenkäsittelytieteen opiskelijoille

Opintojaksolla harjoitellaan yleisiä, yleisakateemisia ja tietojenkäsittelytieteelliseen alaan liittyviä vuorovaikutustilanteita kirjallisesti ja suullisesti.

Opintojaksolla hankitaan ja harjoitellaan tietojenkäsittelytieteelliseen alaan liittyvää keskeistä sanastoa, joka on välttämätöntä alan keskeisissä kirjoitus- ja puhetilanteissa toimimisessa.

Opintojaksolla luetaan tietojenkäsittelytieteeseen liittyviä autenttisia tekstejä, harjoitellaan tiedonhakua keskeisistä tietojenkäsittelytieteeseen liittyvistä teemoista ja sovelletaan hankittua tietoa erilaisissa kirjallisissa ja suullisissa oppimistehtävissä, niin yksilö-, pari- kuin ryhmätöidenkin avulla.

Opintojaksolla harjoitellaan sisällön tuottamista eri sovelluksissa, esimerkiksi videoesityksen tekoa.

3

English Academic Reading and Study Skills

Tarkoituksenmukainen lukustrategia, yleistieteellinen ja oman alan keskeisin sanasto, tieteellisen artikkelin rakenne, asioiden välisiä suhteita ilmaisevat vihjesanat sekä ymmärtämisen kannalta keskeiset kielen rakenteet.

2

Tietojenkäsittelytieteen tiedonhaku

- tieteellisen julkaisutoiminnan, aineistojen luotettavuuden arvioinnin ja tekijänoikeuden perusteet
- tiedonhaun aiheen analysointi ja hakulauseiden laatiminen
- suunnitelmallinen tiedonhakuprosessi
- oman alan kotimaisten ja kansainvälisten tietokantojen käyttö

1


Syventävät opinnot

Tietojenkäsittelytieteen syventäviin opintoihin kuuluu 2 pakollista 6 op kurssia, jotka voi valita tarjolla olevista viidestä kurssista: Algoritmien suunnittelu ja analysointi, Ohjelmistotuotanto, Tietojenkäsittelytieteen tutkimusmenetelmät, Hahmontunnistus ja Tekoäly.

UEF tietojenkäsittelytieteen syventävät opinnot

Opintojakso

Kurssikuvaus

Laajuus (opintopisteet)

HOPS Tietojenkäsittelytiede(FM)

1

Advanced English Academic and Professional Communication for Applied Physics, Computer Science and Environmental Science

Opintojaksolla käydään läpi kulttuurin vaikutusta viestintään, akateemisen kirjoittamisen erityispiirteitä sekä tieteellisen kirjoittamisen osa-alueita. Käydään läpi keskeisiä englannin rakenteita sekä tarvittavia kieliopillisia seikkoja. Lisäksi harjoitellaan oman alan tieteellistä suullista ja kirjallista viestintää.

2

Algoritmien suunnittelu ja analysointi

Algoritmien suunnitteluperiaatteet ja niiden soveltaminen tietojenkäsittelytehtäviin. Keskeisiä algoritmien analysointitekniikoita ja suunnitteluperiaatteita, kuten hajoita-ja-hallitse sekä dynaaminen ohjelmointi. NP-täydellisyys ja rakenteisen vaativuusteorian perusteet. Esimerkkejä tietorakenteista ja NP-kovien laskentaongelmien ratkaisukeinoista (esim. heuristiset, likimääräiset ja satunnaistetut menetelmät).

6

Ohjelmistotuotanto

Erilaiset elinkaarimallit ja kehitysputket kuvastavat erilaisia lähestymistapoja ohjelmistotuotantoon – opetellaan sopimuskeskeisen (kuten vesiputous), kehittämisprosessikeskeisen (kuten agile), asiakaskeskeisen (kuten DevOps) ja prosessikeskeisen (kuten iBPMS) ohjelmistotuotannon keskeiset periaatteet ja termit. Erilaisia hallinnointiin tarkoitettuja viitekehyksiä (kuten ISO/IEC 38500) hyödynnetään ohjelmistotuotannon johtamisessa – opetellaan mistä asioista ohjelmistotuotannon johtamisessa on kysymys ja miten ohjelmistotuotantoa hallinnoidaan. Hyvät käytännöt, erilaiset säännöt ja säädökset ovat esimerkkejä asioista, jotka tulee huomioida ohjelmistotuotannossa – opetellaan kokoamaan ja muodostamaan käytännesääntöjä, joita ohjelmistotuotannossa tulee noudattaa

6


Tietojenkäsittelytieteen tutkimusmenetelmät

Kurssilla perehdytään tietojenkäsittelytieteen tutkimukseen, tutustutaan tietojenkäsittelytieteessä sovellettaviin tutkimusmenetelmiin sekä käydään läpi tutkimussuunnitelman rakennetta ja sisältöä.

6

Hahmontunnistus

Kurssi antaa johdatuksen modernin hahmontunnistuksen ja koneoppimisen menetelmiin. Kurssilla käsitellään valikoituja aiheita Bayesin luokittelijoista, lineaarisesta luokittelusta, epälineaarisesta luokittelusta, lähimmän naapurin menetelmästä, tiheyden estimoinnista, k-means ryhmittelyalgoritmeista, aikasarja ennustamisesta, moniulotteisuuden vähentämisestä, keinotekoisista hermoverkoista, sumeista hahmontunnistusmenetelmistä, luokittelu- ja ryhmittelytulosten arvioinnista.

6

Tekoäly

Opintojaksolla esitetään syvällinen yleiskatsaus modernin ”Smart anything anywhere” –yhteiskunnan erityispiirteisiin. Opintojakso keskittyy käsittelemään biologisista järjestelmistä inspiraationsa saaneita tekoälyjärjestelmiä. Opintojaksolla käsitellään mm. seuraavia asioita: Erilaiset neuroverkot, soft ja hard tietojenkäsittely, geneettiset algoritmit variaatioineen ja evoluutiolaskenta, jotka pystyvät ratkaisemaan monia vaikeita ongelmia, joissa vanhat menetelmät eivät toimi, biologisten järjestelmien inspiroima parviälykkyys, ihmisen aivot mallina (esim. Blue brain etc.), assosiatiivinen muisti, hahmontunnistus, nomadiälykkyys, emergentit järjestelmät, jne.

6

Erikoistyö

10-20

Maisteriopintojen harjoittelu

10-20

Tietojenkäsittelytieteen FM-seminaari

Opiskelijoiden pitämiä esitelmiä heidän omista pro gradu ‑tutkielmakäsikirjoituksistaan. Mahdollisesti myös muita tieteellisiä esitelmiä.

2

Pro gradu -tutkielma ja kypsyysnäyte

30


Valinnaiset syventävät opinnot

Valinnaiset syventävät opintojaksot vuorottelevat eri vuosina. Valinnaisia syventävien opintojen opintojaksoja sopii tutkintoon 30-40 op tai jopa enemmän, riippuen omasta HOPS:sta. Valinnaiset syventävät opintojaksot kannattaa valinta omaan syventävien opintojen suuntautumiseen eli HOPS:iin sopiviksi sen lisäksi että ne sopivat omiin kiinnostuksen kohteisiin ja työllistymisen tukemiseen.

UEF tietojenkäsittelytieteen valinnaiset yleisopinnot

Opintojakso

Kurssikuvaus

Laajuus (opintopisteet)

Ryhmittelymenetelmät

Ryhmittely on perustyöväline tietoanalyysissä, hahmotunnistuksessa ja tiedon louhinnassa ennestään tuntemattomien ryhmien löytämiseksi.

Kurssilla opitaan algoritmeja ryhmien määrän ja sijainnin löytämiseen.

Kurssilla käsittellän myös piirreirroitusta, tiedon normalisointia ja häiriöpisteiden poistamista.

5

Algoritmien erikoiskurssi

Kurssilla käsitellään valittuja aiheita algoritmiikasta ja laskennasta yleisemmin. Aiheet sisältävät evolutionäärisiä algoritmeja, informaatio- teoriaa, tiedon tiivistämisen perusteita, branch-and-bound sekä muita tutkimuksesta esille nousevia aiheita

5


Ohjelmistoprosessin hallinta

Ohjelmistoprosessin käytännöt, joilla hallitaan organisaation liiketoiminnallisten tavoitteiden mukaisten ohjelmistotuotteiden ja -palvelujen tuottamista.

5

Modernin opetusteknologian perusteet

Opetusteknologian ajankohtaiset kehityssuunnat. Opetusteknologian uusimpiin ratkaisuihin tutustuminen sekä niiden soveltaminen opetuksessa.

5

Ihmisen ja tietokoneen vuorovaikutus

Ihmisen ja tietokoneen asettamat vaatimukset ja rajoitukset vuorovaikutuksen toteuttamisen kannalta. Erilaiset mallit ja teoriat vuorovaikutuksesta. Suunnitteluprosessit vuorovaikutuksen toteuttamiseksi.

5

Digitalisaation perusteet

Informaatioteknologia muuttaa toimintaamme ja käsitystämme yhteiskunnasta, työstä, tieteestä ja elämäntavoistamme. Automaation myötä katoaa töitä joita aiemmin on pidetty pysyvinä, ja monien on vaikea päivittää osaamistaan uusien töiden vaatimusten mukaisiksi. Tämä kurssi esittelee automaation mekanismeja aloilla joiden sisältöä ja työllisyystilannetta digitalisaatio on muuttanut. Kurssi esittelee noiden muutosten yhtäläisyyksiä ja mekanismeja sekä ratkaisuehdotuksia ongelmiin. Kurssin aiheita ovat esimerkiksi tietotyön automatisointi, simulaatiot, virtuaalitodellisuus, pilvipalvelut, sekä muutokset esimerkiksi liikenteen, tieteen, terveydenhuollon ja opetuksen aloilla.

5

Kehitys- ja opetusteknologia

Kurssilla tutustutaan laitoksen kehitys- ja opetusteknologian tutkimukseen. Kurssin aikana käsiteltävät teemat liittyvät kehitys- ja opetusteknologian erikoistumisalan jatko-opiskelijoiden väitöskirjaprojekteihin ja post-doc tutkimukseen. Kurssin sisältö vaihtelee vuosittain.

5

Käyttäjäkeskeinen suunnittelu

Käyttäjäkeskeisen suunnittelun haasteet, menetelmät ja standardit. Inhimilliset tekijät suunnittelussa. Käyttäjäkeskeisen suunnittelun vaikutukset ohjelmistoprosessiin.

5

Katseenseuranta

Näköaistin toiminta, visuaalinen attentio, pupillin koon mittaaminen, silmänliikkeet, katseenseurannan periaatteet, silmänliikedatan analysointi ja visualisointi, katseenseuranta käytettävyysmenetelmänä, reaaliaikainen katseenseurantaa hyödyntävä vuorovaikutus.

5

Laskennallinen älykkyys II

Opintojaksolla esitetään yleiskatsaus modernin ”Smart anything anywhere” –yhteiskunnan erityispiirteisiin. Opintojaksolla käsitellään mm. seuraavia asioita: Soft ja hard tietojenkäsittely, Geneettiset algoritmit ja evoluutiolaskenta, jotka pystyvät ratkaisemaan monia vaikeita ongelmia, joiden vanhat menetelmät eivät toimi, biologisten järjestelmien inspiroima parviälykkyys, tekoäly (AI), Ihmisen aivot mallina (esim. Blue brain etc.), Neuroverkot, Hahmontunnistus, Nomadiälykkyys, Emergentit järjestelmät, jne.

5

Konenäkö

Opintojaksolla käsitellään mm. seuraavia asioita:

Konenäön historia

Digitalinen kuva ja sen muodostuminen, erilaiset kuvahilat

Binäärikuva, harmaatasokuva, värikuva, spektrikuva

Kuva-algebra ja kuvahilan metriikoiden vaikutus menetelmiin

Matemaattinen morfologia konenäössä

Keskiset menetelmät, kuten dilaatio, eroosio, avaus, sulkeminen, vesirajamuunnos, jne.Etäisyysmuunnokset sekä binääri-, harmaaataso-, että värikuville

Väriavaruudet ja niiden käyttö konenäössä

Reunanetsintä

Geometristen kuvioiden tunnistaminen (Hough.muunnos, jne.), kulmien tunnistaminen

Spatiaalinen ja taajuustason kuva

Kuvien suodatus taajuustason avulla

Eri tyyppiset kuvakohinat ja niiden suodattaminenFourier-muunnoksen käyttö konenäössä (sekä harmaaataso- että värikuvissa)

Fyysisten esineiden tunnistaminen sekä spatiaali- että taajuustason kuvien avullaKuvien tiivistäminen

Häviöllinen ja häviötön tiivistäminen

Kuvamuunnoksiin perustuvia tiivistysmenetelmiä (esim. JPEG ja JPEG2000)

Ennustamiseen perustuvia tiivistysmenetelmiä

5

Rinnakkaislaskenta

Johdatus rinnakkaislaskentaan, rinnakkaisalgoritmeihin ja rinnakkaisohjelmointiin. Rinnakkaislaskennan mallit, arkkitehtuurit ja rinnakkaisalgoritmien suunnitteluperiaatteet. Rinnakkaisohjelmien toteutus erilaisilla alustoilla.

5

Paikkatietoisten mobiilisovellusten kehitys

Kurssilla perehdytään paikkatietoa hyödyntävien mobiilisovellusten kehitykseen. Aluksi esitellään paikkatietoisten sovellusten taustaa, paikannusmenetelmiä ja kartoitusta. Tämän jälkeen keskitytään sovelluskehitykseen verkossa käyttäen HTML/JavaScript/-tekniikoita. Sovellusten taustalla olevat palvelinratkaisut käydään valmiiden API-komponenttien avulla. Kurssin loppuosassa perehdytään valikoituihin tutkimusongelmiin.

5

Paikkatietoinen koneäly

Keskitymme koneälyn käyttöön paikkatietoisissa sovelluksissa. Tutkimusaiheet sisältävät (mutta eivät rajoitu) seuraaviin aiheisiin: hakukoneet, suositusjärjestelmät, web-louhinta, tapahtuman havaitseminen, työnnä/vedä -ilmoitukset, ryhmittely, sosiaaliset verkot, GPS-reitin analysointi, katuverkon muodostus.

5

Laskennallinen väri

Kurssi esittelee tarkan värikuvantamisen antamia mahdollisuuksia ja ongelmia. Kurssilla esiteltävät laskennalliset menetelmät liittyvät värispektridatan approksimointiin ja värienhallintaan.

Kurssilla käsiteltävät aiheet:

Johdatus väri- ja spektrikuvantamiseen

Mallit spektreille ja värikoordinaateille.

Spektreihin ja CIE standardiin perustuvat värienhallintamallit

Fysikaaliset ja empiisiset reflektanssien estimointi- ja värikalibrointimallit

Aliavaruusprojektiot, Pääkomponenttianalyysi

Ei-negatiivinen Matriisihajotelma ja Ei-negatiivinen Tensorihajotelma.

5

Color Science Laboratory

Kokeellinen laboratoriotyö yksin tai ryhmässä tehtynä ja sen raportointi. Aihe vaihtuu vuosittain.

5

Algorithmic Data Analysis

Kehittyneet luokittelumenetelmät. Tietovirtojen louhiminen. Aika- ja paikkaperustaisen data louhiminen. Poikkeuksien havaitseminen

5

Matrix Decomposition Methods in Data Analysis

Matriisihajoltemien tulkinta. Ominaisarvohajotelma ja QR-hajotelma: käyttö data-analyysissä ja laskeminen. Singulaariarvohajotelma (SVD) ja pääkomponenttianalyysi (PCA): käyttö data-analyysissä ja perusalgoritmi SVD:n laskemiseen. Epänegatiivinen matriisihajotelma (NMF): käyttö, variaatiot ja eri algoritmityypit. Itsenäisten komponenttien analyysi (ICA): käyttö ja laskeminen. Sarake- ja sarake-rivi-hajotelmat (CX ja CUR): käyttö ja laskeminen. Matriisien täydentäminen ja matriisihajotelmat muissa algebroissa

5

Tensor Decomposition Methods in Data Analysis

5